eulersche Funktion

eulersche Funktion
eulersche Funktion
 
[nach L. Euler], zahlentheoretische Funktion, die zu einer natürlichen Zahl n die Anzahl ϕ (n) der zu n teilerfremden Zahlen k (mit kn) angibt; z. B. ist ϕ (6) = 2, da 1 und 5 teilerfremd zu 6 sind. Für eine Primzahl p gilt ϕ (p) = p — 1.

Universal-Lexikon. 2012.

Игры ⚽ Нужно решить контрольную?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Eulersche Funktion — Die ersten tausend Werte von Die eulersche Funktion (auch eulersche Funktion genannt) ist eine zahlentheoretische Funktion. Sie gibt für jede natürliche Zahl n an, wie viele positive ganze Zahlen …   Deutsch Wikipedia

  • Eulersche Phi-Funktion — Die ersten tausend Werte von Die eulersche Funktion (auch eulersche Funktion genannt) ist eine zahlentheoretische Funktion. Sie gibt für jede natürliche Zahl n an, wie viele positive ganze Zahlen …   Deutsch Wikipedia

  • Eulersche Phifunktion — Die ersten tausend Werte von Die eulersche Funktion (auch eulersche Funktion genannt) ist eine zahlentheoretische Funktion. Sie gibt für jede natürliche Zahl n an, wie viele positive ganze Zahlen …   Deutsch Wikipedia

  • Eulersche φ-Funktion — Die ersten tausend Werte von φ(n) Die eulersche φ Funktion (auch eulersche Funktion genannt) ist eine zahlentheoretische Funktion. Sie gibt für jede natürliche Zahl n an, wie viele positive ganze Zahlen …   Deutsch Wikipedia

  • eulersche Gammafunktion — eulersche Gammafunktion,   von L. Euler eingeführte komplexe Funktion u. a. zur Interpolation der Fakultät. Die Integraldarstellung der Gammafunktion,   wird auch als das eulersche Integral bezeichnet. Die wichtige Funktionalgleichung für die… …   Universal-Lexikon

  • Eulersche Zahl — Die eulersche Zahl e = 2,718281828459045235... (nach dem Schweizer Mathematiker Leonhard Euler) ist eine irrationale und sogar transzendente reelle Zahl. Sie ist die Basis des natürlichen Logarithmus und der (natürlichen) Exponentialfunktion, die …   Deutsch Wikipedia

  • Eulersche Konstante — γ Die Euler Mascheroni Konstante (nach den Mathematikern Leonhard Euler und Lorenzo Mascheroni), auch Eulersche Konstante, ist eine wichtige mathematische Konstante, die mit dem griechischen Buchstaben γ (gamma) bezeichnet wird. Ihre Definition… …   Deutsch Wikipedia

  • Eulersche Differentialgleichung — Die eulersche Differentialgleichung (nach Leonhard Euler) ist eine lineare gewöhnliche Differentialgleichung höherer Ordnung mit nicht konstanten Koeffizienten der speziellen Form zu gegebenen und Inhomogenität b. Kennt man ein Fundamentalsystem… …   Deutsch Wikipedia

  • Eulersche Differenzialgleichung — Die eulersche Differentialgleichung (nach Leonhard Euler) ist eine lineare gewöhnliche Differentialgleichung höherer Ordnung mit nicht konstanten Koeffizienten der speziellen Form zu gegebenen und Inhomogenität b. Kennt man ein Fundamentalsystem… …   Deutsch Wikipedia

  • Eulersche Betafunktion — Die Eulersche Betafunktion, auch Eulersches Integral 1. Art (nach Leonhard Euler) ist eine mathematische Funktion zweier komplexer Zahlen, die mit Β bezeichnet wird. Ihre Definition lautet: Betafunktion. Die positiven Realteile von x und y liegen …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”